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Abstract

De-centralized traffic information systems based on inter-vehicle communications have drawn

more and more attention from researchers and operators in the areas of transportation engineer-

ing and information technology with the development of wireless communication technologies.

A fundamental performance measurement of such systems is the probability for a piece of in-

formation to travel beyond a point. In (Jin and Recker, 2005), based on the observation and

assumption of instantaneous information propagation in a traffic stream, a novel analytical

model was proposed to analyze the lower bound of the success rate for information to travel

beyond a point under certain traffic conditions, penetration rate, and communication range.

In this paper, we propose another model of the lower bound by using Monte Carlo simula-

tion. With three different, well-chosen random number generators, we demonstrate that Monte
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Carlo simulation results converge to those of the analytical model with increasing number of

Monte Carlo experiments, in a manner predicted by the fundamental theorem of Monte Carlo

simulation. In this sense, the two models cross-validate each other. Hence, both the Monte

Carlo simulation model and the analytical model can be used in practice to estimate the perfor-

mance of an inter-vehicle communication system or select appropriate communication devices

and technologies to realize a level of system performance.

1 Introduction

In recent years, ad hoc communication networks formed by mobile nodes have been investigated

extensively (Perkins, 2000). Interesting applications of such technologies include distributed sensor

networks and inter-vehicle communication (IVC) systems. Especially, IVC systems have been en-

visioned to be the basis of the next generation traffic information systems, which are decentralized

in nature and more resilient to disasters such as earthquakes. Different from other mobile ad hoc

networks, an IVC system consists of highly correlated communication nodes, i.e. equipped vehicles,

since movements of vehicles are governed by rules such as car-following (Gazis et al., 1961) and

traffic flow patterns such as shock waves are common on a road (Lighthill and Whitham, 1955).

To better understand the benefits of an IVC system to traffic control and management, re-

searchers at the California Institute of Telecommunications and Information Technology and the

Institute of Transportation Studies of the University of California, Irvine, have been engaged in

comprehensive research efforts aimed at the development of an autonomous, self-organizing, trans-

portation management, information, and control system (Autonet). The major goals are for studying

the influence of IVC on drivers’ behaviors in a road network, such as route choice and departure

time choice behaviors. In these studies, one thrust of research has been to identify and measure

the most important features of an Autonet system. For example, how far a piece of information

can travel in such a system under certain traffic conditions? To answer this question, one approach
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is to repeat experiments by incorporating traffic simulators (Hartenstein et al., 2001; Yang, 2003).

In another approach developed in (Jin and Recker, 2005), based on the observation that a piece of

message of reasonable size travels much faster than vehicles, information propagation was assumed

to be instantaneous relative to traffic dynamics. Then a novel model was proposed to analytically

describe the relationship between the so-called success rate, a measurement of connectivity between

vehicles, and traffic conditions, penetration rate, and communication range.

In the model in (Jin and Recker, 2005), parameters include traffic conditions (measured by

traffic density ρ), transmission range R, and penetration rate µ. To measure the best possible

performance of inter-vehicle communication, information is considered to propagate in the manner

of “most forwarded within range” (MFR) (Takagi and Kleinrock, 1984). For a traffic stream with a

number of equipped vehicles, one can obtain a so-called MFR communication chain. After studying

the properties of all possible MFR communication chains in a traffic stream for different locations

of equipped vehicles, we proposed a regressive model to compute the success rate for information

to travel h hops to vehicle (c, k), denoted by P (c, k; h). Further we defined the probability for

information to travel beyond (c, k) at h hops as

S(c, k; h) =
∑

(d,i)

P (d, i; h),

which can be considered as relative success rate, and the lower bound of the absolute success rate

for information to travel beyond (c, k) by

s(c, k) = max
h

S(c, k; h).

The lower bound was therefore used as a measurement of the performance of an inter-vehicle com-

munication communication system. In (Jin and Recker, 2005), the success rate s(c, k) is studied for

uniform traffic, randomly distributed traffic, and traffic streams with gaps and shock waves. The

study showed that the lower bound of absolute success rate for information to reach beyond a point

is consistent in magnitude with the corresponding results in (Hartenstein et al., 2001; Yang, 2003).
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This consistency suggests that the observation and assumption of instantaneous information prop-

agation is valid. However, since the measurement of performance and concepts and the approach

in the model of (Jin and Recker, 2005) are significantly different from those in literature, the novel

analytical model is subject to careful validation.

In this paper, we propose another model of instantaneous IVC by Monte Carlo simulation

(Gentle, 2003). Monte Carlo simulation has been widely applied in studying characteristics of

complicated processes, and, if properly devised, should provide more accurate results with larger

number of samples. In an IVC system, where equipped vehicles are randomly located, it is natural

to use Monte Carlo simulations to study its properties, such as how far a piece of information can

travel. Studies in (Hartenstein et al., 2001; Yang, 2003) can both be considered Monte Carlo study in

a loose sense. However, there are the following differences in the model developed in this paper with

those in literature. First, in literature, traffic dynamics models are used. Since randomness can be

introduced in traffic simulators, simulation results are not only related to the random distribution of

equipped vehicles but also to randomness in traffic dynamics. In our study, in contrast, we assume

no traffic dynamics relative to information propagation, and only randomness in distribution of

equipped vehicles is considered. Therefore, the models in literature are fundamentally different from

the one developed in this study. Second, convergence of Monte Carlo simulations was not checked in

existing studies, since the computational load in traffic simulators in those studies prevents a large

number of simulations. In our study, we will carry out the convergence test with as many as 108

Monte Carlo experiments, which can be finished in a reasonable amount of time.

The rest of the paper is organized as follows. In Section 2, we introduce three well-chosen

random number generators. In Section 3, we formulate the instantaneous information propagation

problem with Monte Carlo simulation and propose measurements of simulation errors. In Section 4,

with three random number generators, we demonstrate simulation results and compare simulation

results with theoretical results. In Section 5, we conclude our study.
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2 Three random number generators

To ensure the validity of results of Monte Carlo simulations, general requirements on used random

number generators (RNGs) include long period, good distribution properties, and fast computing

speed. Moreover, chosen RNGs should be thoroughly analyzed and tested theoretically and empiri-

cally. In addition, since every RNG has its own known or unknown limitations and could intrinsically

interfere with a Monte Carlo simulation model, it is recommended to use several different RNGs in

a study. 1

In our study, we choose three RNGs: the standard RAND() function included in C-library

stdlib.h, MRG32k3a (L’Ecuyer, 1999), and MT19937 (Matsumoto and Nishimura, 1998). The first

is a simple C-function and can be easily implemented, while the latter two, with carefully chosen

parameters, have been theoretically and empirically shown to have long periods, good distribution

properties, and fast in computing. In the following, the three RNGs are briefly introduced.

2.1 RAND RNG

RAND is a standard RNG in the C-library stdlib.h and realized by a linear congruential method

(Knuth, 1997) in the form of

xn+1 = (axn + b) mod m, (1)

where a, b, and m are constants. On a 32-bit machine, the period of this RNG is about 231

(Matsumoto and Nishimura, 1998).

2.2 MRG32k3a RNG

The MRG32k3a (L’Ecuyer, 1999) algorithm, a combined multiple recursive random number gener-

ator (MRG), combines three copies of multiple recursive random number generator in the following

1Ref: http://random.mat.sbg.ac.at/generators/index.html
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form (j = 1, 2):

xj,n = (aj,1xj,n−1 + aj,2xj,n−2 + aj,3xj,n−3) mod mj , (2a)

zn = (x1,n − x2,n) mod m1, (2b)

ũn = (zn + δm1)/(m1 + 1), (2c)

δ =















0, zn 6= 0;

1, zn = 0.

(2d)

In this RNG, the two moduli m1 = 232−209 and m2 = 232−22853 are distinct primes, the jth MRG

has period length of m3
j − 1, a1,1 = 0, a1,2 = 1403580, a1,3 = −810728, a2,1 = 527612, a2,2 = 0,

a2,3 = −1370589, and initial values (or seed) of (x1,0, x1,1, x1,2) and (x2,0, x2,1, x2,2) must not be

all zero and must be smaller than both m1 and m2 respectively. The MRG32k3a RNG returns a

uniformly distributed random number ũn ∈ (0, 1), with period length of (m3
1 − 1)(m3

2 − 1)/2 ≈ 2191.

Since aj,i(mj − 1) < 253 for j = 1, 2 and i = 1, 2, 3, quantities in (2a) can always be exactly

represented by 32-bit floating point numbers on a computer supporting the IEEE 754 floating-point

arithmetic standard, on which a number of double precision has 53 bits for the significand (Goldberg,

1991). Therefore, in the implementation of MRG32k3a, all variables are converted to exact floating-

point representations (e.g., in C-language compiler), and all computations are directly done with

floating-point arithmetic. This implementation is generally faster than implementation with integer

arithmetic. Note that, however, even though ũn is represented with 53-bit floating-point numbers,

the actual output string is just 32 bits due to rounding errors, and, to obtain more precision, one can

combine two or more strings together. In (L’Ecuyer, 1999), the MRG32k3a RNG has been shown

to have good structural properties through spectral test (Knuth, 1997).

2.3 MT19937 RNG

The MT19937 RNG, Mersenne Twister 19937 (Matsumoto and Nishimura, 1998), is a type of

multiple-recursive matrix method based on boolean arithmetics. In a recommended implementation,
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a sequence of 32-bit floating-point or integer numbers, xk = (x31
k , · · · , x0

k), where xi
k is a boolean

number (i = 0, · · · , 31), are generated as follows, where all computations are in boolean arithmetics,

and x << u and x >> u mean u-bit shift left and right respectively

xk+624 = xk+397 + (x31
k , x30

k+1, · · · , x0
k+1) · A, (3a)

zk+624 = xk+624 · T, (3b)

where

x · A = x >> 1 + x0 · 9908B0DF, (3c)

and the tempering operator T is defined in order as

y = x + (x >> 11), (3d)

y = y + (y << 7) AND 9D2C5680, (3e)

y = y + (y << 15) AND EFC60000, (3f)

z = y + (y >> 18). (3g)

With the definition above, MT19937 has 623-dimensional equidistribution property and an

exceedingly large period of 219937 − 1, where 19937 is the 24th known Mersenne number 2. Due to

computational difficulty of implementing spectral test for the 623-dimensional RNG, k-distribution

test was used as the major statistical test. In MT19937, favorable k-distribution property is obtained

through the tempering process in (3b), since the raw sequence obtained from sole linear recurrence in

(3a) has very poor k-distribution property. In addition, MT19937 also passed other standard tests,

such as the diehard tests 3. With the aforementioned features, MT19937, consuming 624 computer

word, was reported to be as fast as RAND since it is based on boolean arithmetics. Therefore,

it is suggested that MT19937 could be most suitable for Monte Carlo simulations of complicated

2Ref: http://www.utm.edu/research/primes/mersenne/
3Ref: http://www.csit.fsu.edu/∼burkardt/f src/diehard/diehard.html
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systems (Matsumoto and Nishimura, 1998). In our study, we use an implementation of MT19937 in

C, available at http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MT2002/emt19937ar.html.

3 Monte Carlo simulation of instantaneous information prop-

agation

For a traffic stream with n vehicles in C cells and vehicle (C, K) as the last vehicle, the flow-chart

of Monte Carlo simulation of instantaneous information propagation is shown in Figure 1, in which

each step is carried out as follows.

• Inputs for the experiments include positions of n vehicles x(c, k), penetration rate µ, commu-

nication range R, and the number of experiments M .

• In each experiment, n uniformly distributed random variables, among which random variable

X(c,k) corresponds to vehicle (c, k), are generated in [0, 1].4

• If X(c,k) ≤ µ, vehicle (c, k) is equipped, and the event when vehicle (c, k) is equipped is denoted

by (c, k;−1).

• Starting from the source, information is transmitted to the farthest equipped vehicle within a

communication range, i.e., in the manner of MFR. In this way, we can obtain a unique MFR

communication chain for each experiment. If information travels to vehicle (c, k) with h hops

(h > 0), or vehicle (c, k) is the hth node of a communication chain, we denote this event by

(c, k; h).

• The numbers of occurrences of (c, k;−1) and (c, k; h) are denoted by N(c, k;−1) and N(c, k; h)

respectively. In each experiment, these quantities are added by 1 if the corresponding events

occur.

4The interval can also be (0, 1), (0, 1], or [0, 1].
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• After finishing M experiments, the average probabilities of (c, k;−1) and (c, k; h) can be com-

puted by

PM (c, k;−1) =
N(c, k;−1)

M
, (4)

PM (c, k; h) =
N(c, k; h)

M
. (5)

Then we can further compute the following performance measurements of an IVC system

SM (c, k; h) =

(C,K)
∑

(d,i)=(c,k)

PM (c, k; h), (6a)

sM (c, k) = max
h

SM (c, k; h), (6b)

where SM (c, k; h) is the success rate relative to the number of hops, and sM (c, k) is the lower

bound of the absolute success rate for information to travel beyond vehicle (c, k).

To compare the difference between PM (c, k;−1) and µ, for (c, k) = (1, 1), · · · (C, K), we define

the following three aggregate errors:

‖PM (c, k;−1) − µ‖1 =

∑(C,K)
(c,k)=(1,1) |PM (c, k;−1)− µ|

K
,

‖PM (c, k;−1) − µ‖2 =

√

∑(C,K)
(c,k)=(1,1) |PM (c, k;−1)− µ|2

K
,

‖PM (c, k;−1) − µ‖∞ =
(C,K)
max

(c,k)=(1,1)
|PM (c, k;−1)− µ|.

Similarly, we can define these errors between PM (c, k; h) and P (c, k; h). Since P (c, k; h) is a two-

dimensional vector with h = 1, · · · , 2C − 1 and (c, k) = (1, 1), · · · , (C, K), the summation in the

equations above has to be taken for both the number of vehicles and the number of hops. Since the

two performance measurements in (6) are derived from PM (c, k; h), we expect them to have similar

convergence pattern as PM (c, k; h).
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4 Monte Carlo simulation results

In this section, we simulate instantaneous information propagation with Monte Carlo experiments.

We use the following seeds for the three RNGs: 12345 for initial value x1 in RAND, 12345 for all

initial values of (x1,0, x1,1, x1,2) and (x2,0, x2,1, x2,2) in MRG32k3a, and four initial values 0x123,

0x234, 0x345, 0x456 in MT19937 5. Since all seeds are constant, these simulation results can be

properly replicated by any interested parties. Here, the number of experiments, M , varies from 103

to 108.

4.1 Monte Carlo simulation for a uniform traffic stream

In this subsection, we show Monte Carlo simulation results with penetration rate µ = 10% and

communication range R = 1 km for a uniform traffic stream, spreading 15 communication cells with

300 vehicles 6. In this subsection, we only use MT19937 RNG to demonstrate the properties of the

Monte Carlo simulation model qualitatively.

In Figure 2, we demonstrate the differences in P (c, k; h) and s(c, k) between Monte Carlo

simulation results and theoretical results for hops h = 2, 6, and 10, with the number of Monte

Carlo experiments M = 103, 104, 105, and 106. From the figure, we have the following qualitative

observations. First, for the same number of experiments, |PM (c, k; h) − P (c, k; h)| decreases with

the number of hops h. Since the absolute values of P (c, k; h) and PM (c, k; h) also decrease with

h, we expect the relative errors to be comparable for different number of hops. Second, Monte

Carlo simulation results of PM (c, k; h) and sM (c, k) get closer to their analytical counterparts, as

we increase the number of experiments. This suggests that Monte Carlo simulation results converge

to the theoretical results. Therefore, qualitatively, the Monte Carlo simulation results and the

theoretical results are consistent with each other.

5Ref: http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MT2002/CODES/mt19937ar.c
6This traffic stream is the same as in Figure 3 of (Jin and Recker, 2005).
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4.2 Monte Carlo simulation for a non-uniform traffic stream

In this subsection, we show Monte Carlo simulation results for a randomly generated traffic stream,

the same as in Figure 6 of (Jin and Recker, 2005), which spreads 15 communication cells and

consists of 1422 vehicles. We run Monte Carlo simulation on a 32-bit Windows-xp desktop with

3GHz Pentium-4 CPU and 1GB RAM. The Monte Carlo simulation model is implemented with

the MINGW32 c/c++ compiler7. Here we carry out Monte Carlo simulations and compare the

results with the theoretical model for the three RNGs discussed in the preceding section: RAND,

MRG32k3a, and MT19937.

For the three RNGs, simulation results are shown in Tables 1, 2, and 3, respectively. From these

three tables, we have the following observations. First, the three RNGs yield almost the same errors

in penetration rate µ and P (c, k; h). Second, MRG32k3a takes almost twice the time as RAND and

MT19937. Third, the differences, e.g. ‖PM (c, k;−1)− µ‖1 and ‖PM (c, k; h)− P (c, k; h)‖1, decrease

with increasing number of samples in a rate proportional to 1/
√

10. This convergence pattern,

observed for all three norms of errors, agrees to that predicted by the fundamental theorem of Monte

Carlo simulation (Kalos and Whitlock, 1986, Chapter 4). Since the performance measurements,

S(c, k; h) and s(c, k) are derived from P (c, k; h), we expect them to share the same convergence

pattern as P (c, k; h). Therefore, we can conclude that the Monte Carlo simulation results converge

to the analytical results in (Jin and Recker, 2005). In this sense, the analytical model and the Monte

Carlo model cross-validate each other.

5 Conclusion

In this paper, we proposed a Monte Carlo simulation model of instantaneous information propagation

through inter-vehicle communication in a traffic stream. With three different, well-chosen random

7Ref: http://www.mingw.org/
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number generators, we confirmed that Monte Carlo simulation results converge to the theoretical

values predicted by an analytical model in (Jin and Recker, 2005). That is, the Monte Carlo

simulation model and the analytical model cross-validate each other.

The consistency between the simulation and theoretical results implies that both the Monte

Carlo simulation model developed in this paper and the analytical model developed in (Jin and

Recker, 2005) are valid for computing the lower bound of the success rate for information to travel

beyond a point. That is, we have two parallel approaches to studying the performance of an IVC

system: one providing analytical results and the other providing simulation results. Further, al-

though this study is not intended to compare RNGs, it seems that the MT19937 RNG is the best

among the three RNGs for Monte Carlo simulations since it is fast with attractive properties.

In the future, we will be interested in studying the success rate of information propagation in

a road network and other performance measurements of an IVC system such as its communication

capacity (Gupta and Kumar, 2000). For these studies, both the analytical approach in (Jin and

Recker, 2005) and the Monte Carlo simulation approach developed in this paper will be exploited.

References

D. C. Gazis, R. Herman, and R. W. Rothery. Nonlinear follow-the-leader models of traffic flow.

Operations Research, 9(4):545–567, 1961.

J. E. Gentle. Random number generation and Monte Carlo methods. Springer-Verlag, New York,

2nd edition, 2003.

D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM

Computing Surveys, 23(1):5–48, 1991.

P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Information

Theory, 46(2):388–404, March 2000.

12



H. Hartenstein, B. Bochow, A. Ebner, M. Lott, M. Radimirsch, and D. Vollmer. Position-aware ad

hoc wireless networks for inter-vehicle communications: the fleetnet project. In Proceedings of the

2nd ACM international symposium on Mobile ad hoc networking & computing, pages 259 – 262,

Long Beach, CA, USA, 2001.

W.-L. Jin and W. W. Recker. Instantaneous information propagation in a traffic stream through

inter-vehicle communication. Transportation Research Part B, 2005. Forthcoming.

M. H. Kalos and P. A. Whitlock. Monte Carlo methods. J. Wiley & Sons, New York, 1986.

D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. 3rd edition,

1997.

P. L’Ecuyer. Good parameters and implementations for combined multiple recursive random number

generators. Operations Research, 47(1):159–164, 1999.

M. J. Lighthill and G. B. Whitham. On kinematic waves: II. A theory of traffic flow on long crowded

roads. Proceedings of the Royal Society of London A, 229(1178):317–345, 1955.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform

pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation, 8

(1):3–30, January 1998.

C. E. Perkins, editor. Ad Hoc Networking. Addison Wesley Professional, 2000.

H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed packet radio

terminals. IEEE Transactions on Communications, 32(3):246–257, March 1984.

X. Yang. Assessment of A Self-Organizing Distributed Traffic Information System: Modeling and

Simulation. PhD thesis, University of California, Irvine, 2003.

13



INPUT: Traffic stream of 

n vehicles, penetration rate, 

communication range, M

Generate n  uniformly 

distributed random number 

Determine equipped vehicles

Determine the MFR 

communication chain 

OUTPUT: );,( hkcN

and  )1;,( kcN

R
ep

eat
M

 tim
es
Cumulate occurrences 

of );,( hkc  and )1;,( kc

Compute: );,( hkcP
M

, )1;,( kcP
M

,

);,( hkcS
M

, and ),( kcs
M

Figure 1: Monte Carlo simulation of instantaneous information propagation through inter-vehicle
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M 1e3 1e4 1e5 1e6 1e7 1e8
‖PM (c, k;−1) − µ‖1 1.8323e-4 5.8080e-5 1.8177e-5 5.6776e-6 1.8791e-6 7.0910e-7

‖ · ‖2 6.9097e-3 2.1902e-3 6.8543e-4 2.1410e-4 7.0861e-5 2.6740e-5
‖ · ‖∞ 2.2000e-2 8.1000e-3 2.3000e-3 7.4300e-4 2.3440e-4 6.6020e-5

‖PM (c, k; h) − P (c, k; h)‖1 2.2983e-5 8.4473e-6 2.2481e-6 7.0457e-7 3.0239e-7 7.9274e-8
‖ · ‖2 8.6669e-4 3.1854e-4 8.4773e-5 2.6569e-5 1.1403e-5 2.9894e-6
‖ · ‖∞ 1.2544e-2 6.0250e-3 1.2713e-3 4.9344e-4 1.6600e-4 5.2160e-5

CPU time (seconds) 1.4100e-1 5.6300e-1 4.8280 5.2438e1 4.8906e2 4.7941e3

Table 1: Monte Carlo simulation results with RAND

M 1e3 1e4 1e5 1e6 1e7 1e8
‖PM (c, k;−1) − µ‖1 1.8205e-4 5.7420e-5 1.8035e-5 5.8041e-6 1.8383e-6 5.7414e-7

‖ · ‖2 6.8650e-3 2.1653e-3 6.8007e-4 2.1887e-4 6.9320e-5 2.1650e-5
‖ · ‖∞ 2.1000e-2 7.6000e-3 2.4200e-3 7.8500e-4 2.5370e-4 7.4950e-5

‖PM (c, k; h) − P (c, k; h)‖1 2.3869e-5 7.6824e-6 2.5533e-6 7.5616e-7 2.7190e-7 7.8789e-8
‖ · ‖2 9.0007e-4 2.8970e-4 9.6283e-5 2.8514e-5 1.0253e-5 2.9711e-6
‖ · ‖∞ 1.8569e-2 5.6454e-3 1.3900e-3 4.6798e-4 1.9138e-4 4.4170e-5

CPU time (seconds) 2.3500e-1 1.6090 1.5891e1 1.5322e2 1.5328e3 1.5292e4

Table 2: Monte Carlo simulation results with MRG32k3a

M 1e3 1e4 1e5 1e6 1e7 1e8
‖PM (c, k;−1) − µ‖1 1.8412e-4 5.7507e-5 1.8941e-5 5.7828e-6 1.8741e-6 5.8001e-7

‖ · ‖2 6.9431e-3 2.1686e-3 7.1425e-4 2.1806e-4 7.0671e-5 2.1872e-5
‖ · ‖∞ 2.7000e-2 8.0000e-3 2.3400e-3 1.0190e-3 2.5460e-4 7.8670e-5

‖PM (c, k; h) − P (c, k; h)‖1 2.3640e-5 8.0027e-6 2.5177e-6 8.1972e-7 2.2953e-7 7.4876e-8
‖ · ‖2 8.9145e-4 3.0178e-4 9.4939e-5 3.0911e-5 8.6553e-6 2.8235e-6
‖ · ‖∞ 1.5318e-2 4.5631e-3 1.6600e-3 4.6425e-4 1.2352e-4 5.0290e-5

CPU time (seconds) 1.5700e-1 9.5300e-1 7.7970 7.7594e1 6.9038e2 6.7585e3

Table 3: Monte Carlo simulation results with MT19937
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